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Remarkable progress has been made in conjugated copoly-

mer  donors  due  to  the  development  of  novel  fused-ring  ac-
ceptor  (FRA)  building  units[1−15].  The  copolymers  based  on
FRA units have delivered excellent power conversion efficien-
cies  (PCEs)  up  to  18.69%  in  organic  solar  cells  (OSCs)[16].
Fused-ring  aromatic  lactones  are  promising  FRA  units[17−19].
Their  merits  include  rigid  and  extended  molecular  geometry,
strong  electron-withdrawing  capability  and  facile  synthesis.
These  merits  render  the  copolymer  donors  good  hole  mobil-
ity,  deep HOMO levels (the highest occupied molecular orbit-
al)  and low cost.  Our  group first  reported a  copolymer donor
L1  based  on  a  fused-ring  aromatic  lactone,  5H-dithieno[3,2-
b:2',3'-d]pyran-5-one  (DTP)[17].  Inverted  and  conventional  sol-
ar  cells  based  on  L1  and  a  nonfullerene  acceptor  Y6[20] af-
forded  14.36%  and  14.63%  PCEs,  respectively.  To  further  im-
prove  the  performance,  we  designed  a  fused-ring  aromatic
thiolactone  unit,  5H-dithieno[3,2-b:2',3'-d]thiopyran-5-one
(DTTP),  and  synthesized  the  thiolactone  copolymer  donor
D16[18].  It  was  found  that  the  replacement  of  oxygen  by  sul-
phur on lactone moiety enhanced π–π stacking and hole mo-
bility  of  the  copolymer.  Consequently,  conventional  solar
cells  based on D16 and Y6 gave an improved PCE of  16.72%.
However,  compared  with  the  commercially  available  DTP
unit, the DTTP unit shows synthetic complexity[21], thus increas-
ing the cost of D16. In this work, we report a simple and effect-
ive  post-sulphuration  strategy  to  enhance  the  performance
of  L1.  By  directly  reacting  with  Lawesson  reagent,  the  car-
bonyl group on L1 can be transformed to thiocarbonyl group
(Fig.  1(a)).  The  resulting  sulphurated  copolymer  L1-S  exhibits
a  deeper  HOMO  level,  stronger  light  absorption,  higher  hole
mobility  and  superior  photovoltaic  performance.  Solar  cells
based on L1-S and a nonfullerene acceptor BTP-eC9[22] gave a
PCE  of  17.73%  (certified  17.1%).  L1-S  is  among  the  few
donors with >17% certified PCEs to date[1, 23−25].

The  process  of  the  post-sulphuration  is  very  simple
(Scheme  S1).  Heating  a  mixture  of  L1  and  Lawesson  reagent
in  chlorobenzene  overnight  smoothly  produced  a  dark-red
solution.  The  solution  passed  through  a  short  silica  gel
column to  remove small  molecule  impurities.  It  was  then ad-
ded  into  methanol  and  the  precipitate  was  collected  to  give
L1-S  as  a  brown  solid.  We  also  tried  a  pre-sulphuration  route

to synthesize L1-S via a sulphurated monomer M1-S (see Sup-
porting  Information).  However,  the  final  Stille  copolymeriza-
tion  failed  probably  due  to  the  coordination  of  the  thiocar-
bonyl of M1-S with Pd, which poisoned the Pd catalyst and ter-
minated the polymerization (Scheme S2).  Compared with the
starting  material  L1  that  with  a  number-average  molecular
weight  (Mn)  of  42.5  kDa  and  a  polydispersity  index  (PDI)  of
2.03, L1-S presents similar Mn of 42.8 kDa and PDI of 2.05, sug-
gesting that the polymer chain was not cleaved during the re-
action. The FT-IR spectra for L1 and L1-S are shown in Fig. S5.
From  L1  to  L1-S,  the  characteristic  peak  at  1736  cm−1 (C=O
stretching  vibration)  disappears,  indicating  that  carbonyl
group was converted to thiocarbonyl group.

The  optical  and  electrochemical  properties  of  L1-S  are
quite  different  from  L1.  Absorption  spectra  for  L1  and  L1-S
films are  shown in Fig.  1(b).  Compared with  L1,  L1-S  shows a
bathochromic-shifted  spectrum  and  a  smaller  bandgap.  The
optical  bandgaps  estimated  from  the  absorption  onsets  are
1.96  and  1.88  eV  for  L1  and  L1-S,  respectively.  The  absorp-
tion  coefficients  for  L1  and  L1-S  films  are  7.66  ×  104 and
8.01 × 104 cm−1, respectively, suggesting the stronger light ab-
sorption  of  L1-S.  HOMO  and  the  lowest  unoccupied  molecu-
lar  orbital  (LUMO)  levels  were  estimated  from  cyclic  voltam-
metry  (CV)  measurement  (Fig.  S6)  and  an  energy  diagram  is
shown  in Fig.  1(c).  Compared  with  L1,  L1-S  presents  deeper
HOMO  and  LUMO  levels  of  –5.50  and  –2.94  eV,  respectively.
The  deeper  HOMO  favors  to  produce  higher  open-circuit
voltage (Voc) in solar cells. We also performed density function-
al theory (DFT) calculations for L1 and L1-S (Fig. S7). The DFT-
predicted HOMO and LUMO levels of  L1-S are lower than the
HOMO  and  LUMO  levels  of  L1,  respectively,  consisting  with
the experimental results.  Charge-transporting property of the
polymers  was  evaluated  by  the  space  charge  limited  current
(SCLC)  measurements  (Fig.  S8,  Table  S7).  Compared  with  L1
(hole  mobility  (μh)  5.93  ×  10−4 cm2 V−1 s−1),  L1-S  shows  a
higher μh of  1.17  ×  10−3 cm2 V−1 s−1.  The  higher  mobility  of
L1-S might originate from S···S interactions[18, 26].

The  solar  cells  with  a  structure  of  ITO/PEDOT:PSS/active
layer/PDIN/Ag  were  made  to  evaluate  the  photovoltaic  per-
formance  of  L1-S.  L1  was  used  as  the  reference.  The  D/A  ra-
tio,  active  layer  thickness  and  additive  content  were  optim-
ized  for  L1:BTP-eC9  and  L1-S:BTP-eC9  solar  cells  (Tables  S1–
S6). J–V curves  and  external  quantum  efficiency  (EQE)  spec-
tra  for  the  best  L1:BTP-eC9  and  L1-S:BTP-eC9  cells  are  shown
in Figs.  1(d) and 1(e),  respectively.  The  best  L1  cells  gave  a
PCE  of  16.12%,  with  a Voc of  0.831  V,  a  short-circuit  current
density  (Jsc)  of  25.94  mA  cm–2 and  a  fill  factor  (FF)  of  74.8%,
while  the  best  L1-S  cells  afforded  a  higher  PCE  of  17.73%,
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with  a Voc of  0.845  V,  a Jsc of  27.22  mA  cm–2 and  a  FF  of
77.1%. The L1-S cells were also measured at the National Insti-
tute  of  Metrology  (NIM),  and  a  certified  PCE  of  17.1%  (Voc,
0.827  V; Jsc,  26.47  mA  cm–2;  FF,  78.3%;  effective  area,
2.580  mm2)  was  recorded  (Fig.  S11).  L1-S  is  among  the  few
donors  with >17% certified PCEs to date.  Compared with the
L1  cells,  L1-S  cells  gave  simultaneously  improved Voc, Jsc and
FF.  The  higher Voc can  be  attributed  to  the  deeper  HOMO  of
L1-S.  The  EQE  spectra  indicate  higher  response  of  L1-S  cells
than L1 cells in a wide spectral range, consisting with the high-
er Jsc for  L1-S  cells.  By  plotting  photocurrent  density  (Jph)
versus  efficient  voltage  (Veff),  we  found  the  exciton  dissoci-
ation  probabilities  (Pdiss)  for  L1  and  L1-S  cells  are  98.3%  and
98.7%, respectively, suggesting more efficient exciton dissoci-
ation in the latter (Fig. S12). Charge transport and recombina-
tion  were  further  investigated  to  understand  why  L1-S  cells
gave higher FF. The SCLC measurements indicate that in L1-S
cells  the μh and  electron  mobility  (μe)  are  both  enhanced,
and charge transport are more balanced (Figs. S9 and S10, Ta-
ble  S7).  The  bimolecular  recombination  study  indicated  that
the α values for L1 and L1-S cells are 0.968 and 0.980, respect-
ively,  suggesting less  bimolecular  recombination in  L1-S  cells
(Fig.  S13).  Therefore,  owing  to  the  enhanced  and  more  bal-
anced charge transport and the suppressed charge recombina-
tion,  L1-S  cells  offered better  FF.  Finally,  we studied the mor-
phology  of  L1:BTP-eC9  and  L1-S:BTP-eC9  blend  films  by  us-

ing  atomic  force  microscope  (AFM)  (Fig.  S14).  It  was  found
that  both  films  present  clear  nano-structures.  The  diameters
for  the  nanofibers  are  ~28  and  ~18  nm  for  L1:BTP-eC9  and
L1-S:BTP-eC9 films, respectively. The root-mean-square rough-
nesses  for  L1:BTP-eC9  and  L1-S:BTP-eC9  films  are  9.94  and
2.07  nm,  respectively.  The  finer  nanofibers  and  the  much
smoother surface of L1-S:BTP-eC9 film suggest a higher miscib-
ility between L1-S and BTP-eC9. The morphology of L1-S:BTP-
eC9  film  could  be  more  favorable  for  charge  generation  and
transport, thus improving Jsc and FF.

In summary, treating lactone polymer L1 with Lawesson re-
agent  smoothly  turns  the  carbonyl  group  into  thiocarbonyl
group  and  produces  the  sulphurated  polymer  L1-S.  Com-
pared  with  L1,  L1-S  presents  a  deeper  HOMO  level,  a  smaller
bandgap, a higher absorption coefficient and a higher hole mo-
bility, leading to simultaneously improved Voc, Jsc and FF in sol-
ar  cells.  An  impressive  PCE  of  17.73%  was  achieved  from
L1-S:BTP-eC9  cells,  higher  than  that  from  L1:BTP-eC9  cells
(16.12%).  Considering  that  many  high-performance  donors
contain  carbonyl  groups,  this  post-sulphuration strategy may
be applied to develop new efficient polymer donors.
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